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Abstract—A stress S is said to be conjugate to a strain measure E if the inner product S* K is the
power per unit volume. The logarithmic strain In U, with U the right stretch tensor, has been
considered an interesting strain measure because of the relationship of its material time derivative
(In U)’ with the stretching tensor D. In a previous article (fnz. J. Solids Structures 22, 1019-1032
(1986)) a formula for (In U)" was obtained in direct notation for the cases where the principal
stretches are repeated, as well as for the case where they are all distinct. Here the formula for (o U)
and the definition of conjugate stress are used to derive an explicit, properly invariant expression
for the stress conjugate to the logarithmic strain.

1. INTRODUCTION

The concept of conjugate stress and strain was introduced by Hill[1] as a tool with which
to explore constitutive inequalities in solid mechanics. A stress S and a strain measure E
are said to be a conjugate pair if S * K represents the power per unit volume, so a necessary
and sufficient condition for S and E to be a conjugate pair is that they satisfy

S*E = (det U)T D.

Here U, T and D represent the right stretch, Cauchy stress, and stretching tensors, respec-
tively.

The logarithmic strain In U and the related In V, with V the left stretch, have been
considered useful strain measures, and have enjoyed particular attention because of the
relationships of their material time derivatives to the stretching tensor D (e.g. see Refs
[2-5)).

The problem of finding the stress conjugate to the strain In U has been addressed and
partially resolved by Hill{3, 6]. He obtained the components of this stress with respect to
the principal axes of U for the case where the principal values of U are distinct.

In this paper we find explicit formulas for the stress conjugate to In U which are
expressed in direct notation and hold for repeated as well as all distinct principal stretches.
The strain measure In V has no conjugate stress (see Ref. [7] and the discussion closing
Subsection 3.3).

Section 2 contains a brief summary of the kinematical results which will be used in the
remainder of the paper. The notion of conjugate stress and strain is precisely defined in
that section as well, and we discuss the conditions under which, given a strain measure, the
corresponding conjugate stress is uniquely determined.

In Section 3 the stress conjugate to the logarithmic strain is obtained. The method used
depends on finding a formula for D in terms of In U. Such a formula is derived for the case
of two distinct principal stretches in Subsection 3.1, and for three distinct principal stretches
in Subsection 3.2. The stress conjugate to In U is found by substitution of these expressions
into (det UYT « D ; this is carried out in Subsection 3.3.

A variant of the basic procedure used here to find the stress conjugate to the logarithmic
strain can be successfully applied to the problem of determining the conjugate stress to any
strain measure which can be written in the form
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3
H= z h(4)e; ® ¢
i1

with h a scalar valued strictly monotone function, and A; and e; a principal stretch and
associated principal axis. This result is included in an article on general isotropic strain
measures[8].

2. PRELIMINARIESt

Let F denote the deformation gradient at a point of a deforming body. The requirement
that det F > 0 allows the unique polar decompositions

F=RU=VR m

where U and V, the right and left stretch tensors, respectively, are positive definite symmetric,
and the rotation R is proper orthogonal.

It is assumed that F is a continuously differentiable function of time. The spacial
velocity gradient

L=fF" @4
has as its symmetric part the stretching tensor D.

The eigenvalues of U, which are also those of V, are termed the principal stretches and
denoted by 4,, 4, and 4,. The principal invariants of U and V are

T=A+k+4
I = AjAy+ Aads + A3, 3
I = A, 454,

The Cayley-Hamilton theorem states that every tensor satisfies its own characteristic
equation; e.g. U meets

U —IU+HU—II1=0, @

By the spectral theorem U has the representation
3
U = Z i,-e,- ® e; (5)
jm ]

where {e;,e;,¢,} is an orthonormal basis of eigenvectors of U with the eigenvector, or
principal axis, ¢, corresponding to principal stretch A,. The principal axes of V, {&}, are
related to the principal axes of U through

é,‘ = Re,'.

The tensor logarithm maps positive definite symmetric tensors into symmetric tensors.
The logarithmic strain tensor In U is defined as

3
h’.U--'- Zlnl,-e,'@e;- (6)
im

Expressions for the material time derivative of the logarithmic strain were derived in
Ref. [5]; the results of interest here are displayed below.

1 The notation and terminology of Ref. {9] are followed. o
1 A superposed dot will be used to indicate the material time derivative.
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Suppose that there are three distinct principal stretches, ie A, # A; # 43 #4,. Then

(In Uy = R7[®,D+®,(DV + VD) +®;(V:D+DV?)+®,VDV-
+0,(V2DV+VDV)+ @, VIDVIR (7)

where}

O, = 1=-211I®; — T 1D
O, = 110+ (I I-1IDD, ®
@4 = “2¢3 "‘21@5“(12"‘11)4)5.

The remaining coefficients are defined as follows:

3
o, =Y H,
i=1
1 2 2 2 2
o = TIETii] ;} ({—111 +20,{I H-1IT - W} —20MII— $; [} H;+¢,IG) o
3
@ = }_1}3717 Y {[( H— DI+ 11 =24 (1 IT— I+ (b = 26 )T+ ¢} H, + G}
- jm ]
with
¢i = 1;'}%
o= A+ (10)
G, In A

= G2 i)

- AT = (= ANGi+ G) — (A — 4G+ G))

H;
=4 (=40

and i, j, k an even permutation of 1,2, 3.

Suppose that there are exactly two distinct principal stretches, say§ 4, # 4, = 4; = : 4o.
Then

(InU) =R7[®,D+0,(VD+DV)+0,VDVIR (11
where
O, =1+1,4,0;
O, = —1(4,+20)0, (12)

0. = 203 -)—44 4 In (4,/0)
} A +i)Ai =40

Suppose that there is one distinct principal stretch, i.e. 4; = 1, = 14. Then

1 These relations are not shown explicitly in Ref. [5]; they can be proved by using the expressions for the &,
given there and some tedious algebra.

1 The summation convention is not employed ; i.¢. summation over repeated indices is not implied.

§All cases where it is assumed that A, o 1, = 1, are casily generalized to 4, % 4, = 4, with i, j, k any
permutation of 1, 2, 3. The notation A := B indicates an equality in which A is defined by B.
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(InUy = R™DR. (13)

For the work at hand, the following formulation of the notion of conjugate stress and
strain will be most useful. Let E be a symmetric tensor valued measure of strain. If there
exists a symmetric tensor S such that

S'E=HIT-D (14)%

Sor all motions, then S is the stress conjugate 1o E. As noted in the introduction, III T-D is
the stress power per unit volume.

Note that, given a particular strain measure E, there can be at most one corresponding
conjugate stress S as long as E, taken over the set of all motions, spans the space of
symmetric tensors. Also, in the present case nothing would be gained by allowing S to be
asymmetric as the left-hand side of eqn (14) is insensitive to the skew part of S.

Not every stress tensor has a conjugate strain associated with it. For example, because
the stretching tensor D is not a material time derivative of a strain measure, the Cauchy
stress is not part of a conjugate pair (see e.g. Ref. [7] or Ref. [1]). Similarly, there are strains
which do not have a conjugate stress. One such strain measure is the logarithm of the left
stretch, In V, as will be shown at the end of Subsection 3.3.

It will be shown that there exists a unique symmetric stress conjugate to In U, which
we will denote by T'®, and with the aid of eqn (14) an explicit formula will be derived for
that stress.

Before proceeding we note that (In U)', taken over the set of all motions, spans the
space of symmetric tensors. From eqns (7), (11) and (13) it is evident that (In U) is an
isotropic function of D and V, linear in D. In fact, as calculated in Ref. [5]

Dii 3 i = j
i } ., Xc' = '2
[(n Uy, = Dy PEHA= 4 as)
24,4, In (Af4)

12__12 Dija z#j;ig?él)
1 7

where the components are taken with respect to the principal axes of U and V on the left-
and right-hand sides, respectively. Since the stretching tensor D, when considered over all
motions, spans the space of symmetric tensors,] it is clear from eqn (15) that so, also, does
InU.

3. THE STRESS CONJUGATE TO In U

In this section the stress conjugate to In'U will be determined by the following
procedure, First, the expressions giving (In U)" in terms of D displayed in Section 2 will be
inverted to give equations for D written in terms of (In U)". It is necessary that the number
of distinct principal stretches be specified ; in the case of one distinct principal stretch the
inversion is immediate, the case where there are exactly two distinct principal stretches is
dealt with in Subsection 3.1, and the case of three distinct principal stretches is addressed
in Subsection 3.2. These expressions for D will then be substituted into III'T-D to yield
explicit formulas for the stress T® conjugate to the logarithmic strain ; these are displayed
in Subsection 3.3.

3.1. Two distinct principal stretches o
Throughout this subsection it will be assumed that there are exactly two distinct
principal stretches, say

1 The inner product of two tensors A and B will be denoted by A*B:= tr (A'B). '
1 It suffices to consider motions of the form x(p, ) = tA(p—po), Where Ais an arbitrary constant symmetric
tensor and p,, is an arbitrary fixed point; for then D = A.
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Al #Az=).3 =1/10. (16)
In this case (In U)" is given in terms of D, V, 4, and 4, by eqn (11). Our purpose here is to
obtain an expression for D in terms of (In U)’ valid for this case.
For convenience let
P:=R(n U)yR” 17
then eqn (11) can be written as

P = ©,D+0,(VD+DV)+0,VDV (18)

with the @, given by eqn (12), With respect to the principal axes of V the components of
Pare

Py = Dyl0,+0,(4+4)+0:44] (19)

where i and j range over 1, 2, 3. With the aid of eqn (12) the term in square brackets is easily
calculated :

0,+20,4,+0,47 =1, i=j
24,40 In (A,/4
01+8,0,+A)+0sy = TG g0y, a0
~Ag
O +0,(4+4)+0544 =1, - i A=A

In view of eqn (16), the right-hand side of eqgn (20), is non-zero ; thus eqn (19) may be
inverted to give

P, f=j
12__‘12
D;= P S e, N [ £ 7 .
=Y P L m gy (T @h
P‘f’ '?e.]’ A’I = Aj-

We now seek scalars ¥, such that D may be written as

D =¥ P+¥,(VP+PV)+¥,VPV. (22)
In component form with respect to the principal axes of V, eqn (22) states that

Dy = Py[¥+¥:(4+4)+ ¥ 44] 23)

By substituting the values for D given by eqns (21) into the left-hand side of eqn (23), we
obtain

‘P] +2‘I’2Al +‘I‘3l¥ =1

¥, +2% A+ WA =1 29

A4 A2

¥i+ ot ) +¥shid = 5y
(1)

Treating the ¥, as unknowns for which to solve, one can write system (24) as the
matrix equation
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Comoa |
: (2.2-:1-0110) ).':.;J :z} - _ B+ad : 295
24,40 1In (4,/40)
The determinant of the coefficient matrix is
(A1—40)* #0

by eqn (16). Thus eqn (25) has a unique solution, which by Cramer’s rule is

_ =i =4’ +(A3+48) In (4,/Ao)

P

l (4, "'}-o)2 In (4,/4,)

(A1 +40)[(A3 — 43) — 24,44 In (4,/4,)]

¥, = 26

2= T2, 20— T (i) @)
. _ —G=)+ 2k n (/2

: Aydo(4, —]-o)2 In (A,/40)

Note that the coefficients ¥, satisfy
\Pl = 1+11]110\P3 (27)

¥, = — 34 +4)¥s.

It is interesting that these paralle] the relations among the coefficients ©, of eqn (18) (see
eqn (12)).

We have established that if D admits the representation (22), the scalars Y, are given
by eqns (26). Conversely, if the ¥, are defined by eqns (26), then eqns (24) and therefore eqn
(22) holds. So the stretching tensor D can be written in terms of (in U)' and U in the form

D = R{¥,(In U) +¥,[U(ln U) + (In Uy'U}+¥,U(In UyU}R" (28)

with the ¥; uniquely given by eqns (26) as functions of the two distinct principal stretches.
Equation (1) was employed to write eqn (28) in terms of U rather than V.

3.2. Three distinct principal stretches
The purpose of this subsection is to obtain an expression for D in terms of (In U)’
which is valid when there are three distinct principal stretches, i.e. when

A #E A £ A # 4. 29)

The same basic method as was used in Subsection 3.1 will be used here.
We again employ the definition

P = R(In UyR” (30)
and write eqn (7) as
P = ®,D+®,(DV +VD)+®3(V?D +DV?) 4 ®,VDV +0,(V’ DV +VDV?)+ &, V?DV?
(31

where the coefficients @, are given by eqns (8) and (9).
With respect to the principal axes of V the components of P are
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Py = Dyl®, + @, (4 +4) + @3 (12 + A1)+ O L4+ Osdid; (A + 1)+ @Al 4] (32)

where i, j range over 1, 2, 3. With the aid of eqns (8) and (9), a fairly involved calculation
shows that the term in brackets reduces to

O, + 05 (4 +4) + O3 (A2 + A7)+ B ody 4y + s didy (A + 4y) + @ A2 AP

1, i=j
=244 (4/4) . (33)
-z o 7
Substituting eqn (33) into eqn (32), we obtain
D iis l =.’
Py=91 204 @Af4) . . Bat
{o——ﬁg—u i#]

Recall that the principal stretches are all distinct here (see condition (29)), so the coefficient
of D;; does not vanish. Thus eqn (34) may be inverted :

Py, i=j
D, = 2_ 32 . 35
i {Pa 1,- lj , i#j ( )
24,4, In (A4,/4)

We next establish that unique coefficients A; can be found such that D can be written in
terms of P = R(ln U)'R7as

D = A\P+A;(VP+PV)+A;(VP+PVH)+ A VPV+A(VIPV+VPVY)+ A VPV
(36)

The A, will be scalar functions of the principal stretches.
With respect to the principal axes of V the component form of eqn (36) is

Dy = PylA+As(Ai+4)+ As(AF + A+ Addidy + Asdidy A+ 4) + AgATAZ). (3T)

The left-hand members of eqns (35) and (37) are identical so, by setting the right-hand sides
equal to each other, we find that if such A, exist they must satisfy

A+ As(hi+ )+ As(A2 + 02+ Adhidy+ Ashd, (h+ )+ AgAZA?
1, i=j
= B, .. 09
23,3, 1n (M)’

As the indices range over 1, 2, 3 eqn (38) yields a system of six equations which can be
written in matrix form as

[M}[A] = [N] (39)
where [A] represents the column matrix with components A,

1 This result was established by a different method by Hill[3].

BA8 23:12-p



1652 A. HoGer
1 24 24} 23 243 At
1 24, 243 A3 243 A3
1 244 241 Al 243 A3
[M]: - 5 ] 3 PO A » 243
1 Ayt Al 21+A2 Aiha /q/f.z(/q"}“»zz) A;)&z
I A+4y A4 44, AiAs(A+ 4y Al
LI ArtAs  A34AE 0 A.4, AAs(Aa+A5) 2%2%_
and
-~ I =
1
1
Al-22
M = 244, In (4,/4,)
Al—A2
241451In (4,/45)
A3—43
| 24:451n (Ay/4y) |

With R, representing the ith row of [M], we form a matrix [Af] the rows of which are
RI, R2"‘R|, R]“‘R[, '”"2R4+R|+R2, ""2R5+R|+R3 and —2R6+R2+R3

1 22, 243 i 243 A
0 20h,—4) 203-13) A2-2 243~ 23 PENpL
L0 20-a) 203-4h) B4 243 =13 Ad— 2
(1= 4 0 -k (h—A)h+h) (R—apr| ©O
0 Y 0 (A=143)% (L—A)*(h+4) (Ai=-1)?
| 0 0 0 (A= A3 (A=A A+ i) (A2—~2D)?

The determinant of [M] is now easily calculated to be
dﬁt {M] = det [H] == 4(411 "12)4(}«.2*’13)4(113"11)‘.

Condition (29) implies that det [M] # 0, so eqn (39) possesses a unique solution for the A,.
Rather than solving eqn (39) directly for all six of the coefficients A;, we will conjecture

that the coefficients satisfy the relations
Ay = 1—2IIAs—~1 A
Ay = HAs+ 3T - HDA,
Ay = =20, =2IANs~(I*~IDA,

(41)

and solve for A,, A;, A¢ This conjecture is motivated by the observation that, in the case
of two distinct principal stretches, the coefficients ®, in eqn (18) and W, in eqn (28) satisfy
similar relations (see the remark following eqns (27)). The relationships among the A, in
eqns (41) parallel conditions (8) for the coefficients @, of eqn (31).

With eqns (41), eqn (38), is automatically satisfied, and eqn (38), yields a system of
three equations which can be written in matrix form as
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[M’] = [A][N] 42)
with
(Ai=42* A3(A1—22)* A3+ 24504 +42) — 4,1 42)(A, = 2))°
M]=|(A—=43)* A:(A —45)° AR+ A4+ 43)— 4, 45)(4, — 45)?
Aa=22)° (A —=43) AT+ A (A +A5)— A 45)(A2— 4y)°
A;
A= As
A
and
r A2-a3 ]
22,4, (A,/4)
. A=A}
W= g wam !
Al—2} .
| 222, In (R/ds) |
The determinant of [M‘]is

141 =2 A -4’4 - 4,)

which by condition (29) does not vanish. Thus, eqn (42) has a unique solution, and
calculation by Cramer’s rule gives the following result. Let

¢ = )'jAk
Yi= Atk

as before (see eqns (10)), and define

s = 1n (4/4,)

vi = In (4/4) In (4/4)
A=(4,-2)(A:—43)(As—4y)

T = 24,4243 In (4,/4;) In (2;/2;) In (4,/4,)

(43)

then

1 1
Ay =— @I =31 I I+ = Y. QUy,— ¢} u?)
A rA i
1 . 13
Ag = PUI n—2r:-9lin - TA 1§1 @A +ydayv; 44)

2 22
Ag= K-f(311—12)-- A Y dupt.
=]

By the uniqueness of the solution of eqn (39) we have established that the stretching
tensor D can be expressed in terms of (In U)" and U in the form
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D = R{A(In Uy + A,{U(n U) + (In UY'Ul+A,[U(In Uy + (In UY'U3+ AU(n UYU
+AU(In UyU+U(n Uy U?]+AUn U)'UZ}RT 45)

with the A; uniquely given by eqns (41) and (44) as functions of the three distinct princi-
pal stretches. Equation (1) was used to write the above expression in terms of U rather
than V.

3.3. The stress T9

Equations (45), (28) and (13) provide formulas for D in terms of (In U)" in the case
where there are three, two and one distinct principal stretches, respectively. In this sub-
section we will substitute these formulas for D into JIIT+-D and find, upon comparison
with eqn (14), a formula for the stress conjugate to the logarithmic strain valid for each
case.

Suppose there are three distinct principal stretches. Using eqn (45) we calculate that

HIT-D = IRT{A\T+A,(VI+TV)+A;(VITHTV)+ A VTV A(VTV+VTV?Y)
+AsVTVIR (In U). (46)
Suppose there are exactly two distinct principal stretches. Then eqn (28) holds, so
HIT'D = IIIRTI¥Y , T+ ¥, (VI +TV)+¥,VIV]R: (In U)". 47
Suppose there is only one distinct principal stretch. Here eqn (13) applies, and
IT-D=IIR"R-(InU). (48)
On comparing each of eqns (46)-(48) with eqn (14), we obtain an expression for the
stress conjugate to In U which is valid for the case of three, two and one distinct principal

stretches, respectively. The results can be gathered as follows. The stress TV conjugate to
the logarithmic strain In U is given by

HHRTIA T+ A (TVHVT)+ A (VI T+TVH+ A VTV +A(VTV+VTV?)
+AVTVIR, A, #A # 4 # 4

IITRTY \ T+¥,(VT+TV)+¥,VIVIR, 4, # 4, =14, (49)

HIRTTR, ly=A;=1,

TO =

where the A, are given by eqns (41) and (44) and the ¥, are displayed in eqns (26).

The results obtained so far are independent of material characteristics, and therefore
hold regardless of the constitutive equation. If, however, the material is isotropic elastic,
the rotated Cauchy stress R”TR is an isotropic function of U, so it has the form

RTTR = aol‘*‘a;U“"‘dzUz =:Km)

with the «, scalar valued functions of the principal invariants of U. Here the rotated Cauchy
stress commutes with U, and use of eqn (45) with the Cayley-Hamilton theorem gives

T'D = {[A,+2HAs+1 AU+ [2A, —2IIA s~ (I - IIDAGU
+RA+ A +2IA s+ (P —IDAJUIR'K(U)R - (In U)*  (50)

for three distinct principal stretches. By applying eqns (41) to the terms in square brackets,
we can reduce eqn (50) to
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T'D =RTKU)R(In U)’ = R"TR* (In U)".
A similar result holds for the case of two distinct principal stretches. For one distinct
principal stretch eqn (49); immediately gives T* D = R”TR - (In U)". Thus we directly obtain
the well-known result (see Ref. [1]) that, for an isotropic elastic material, the stress conjugate
to logarithmic strain is the rotated Cauchy stress multiplied by ZI1.

Finally, we return to the assertion that the logarithm of the left stretch has no conjugate
stress. The proof presented here is a variation of one by Ogden[7]. Since

InV = R(ln UR” (51
where R is the rotation, the material time derivative of In V is related to that of In U through
(In V)’ = R(ln UyR” +RR7(In V)— (In V)RR". (52)

Suppose that In V has conjugate stress T!"). Then eqn (14) requires that

T (nV)y = IIT-D =T (n V).
Incorporation of eqns (51) and (52) yields
(T@ —R7TR)- (In Uy = RTT"R - ((In UR"R—RR(n U)). (53)

Recall that a conjugate pair must meet eqn (14) for all motions; thus we may consider a
motion with R = 0 and R = R, where R is an arbitrary proper orthogonal tensor. Then
eqn (53) implies

T = RTOR". (54)

As R is arbitrary, eqn (54) holds for any rotation, i.e. for all motions. Consequently the
right-hand member of eqn (53) must vanish. By eqn (54) this requirement may be rearranged
to

[TO®n U)- (In U)T®]-R'R = 0
therefore
TO(In U) = (In U)TO. (55)

Formula (49) giving T in terms of the Cauchy stress and V can be substituted into eqn
(55) to show that, because the principal axes of V, V2 and InV coincide, eqn (55) is
equivalent to

TV = VT. (56)

Clearly, eqn (56) places restrictions on the constitutive equation which will be met only by
special materials. Thus the logarithm of the left stretch does not, in general, have a conjugate
stress.

However, in the case of an isotropic elastic material eqn (56) is met, and in this case
the stress conjugate to In V is III'T (see the discussion surrounding eqn (50)).
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